An extension of Cameron's result on block schematic Steiner systems
نویسندگان
چکیده
منابع مشابه
Block-Intersection Graphs of Steiner Triple Systems
A Steiner triple system of order n is a collection of subsets of size three, taken from the n-element set {0, 1, ..., n−1}, such that every pair is contained in exactly one of the subsets. The subsets are called triples, and a block-intersection graph is constructed by having each triple correspond to a vertex. If two triples have a non-empty intersection, an edge is inserted between their vert...
متن کاملOn the Block Coloring of Steiner Triple Systems
A Steiner triple system of order v, STS(v), is an ordered pair S = (V,B), where V is a set of size v and B is a collection of triples of V such that every pair of V is contained in exactly one triple of B. A k-block coloring is a partitioning of the set B into k color classes such that every two blocks in one color class do not intersect. In this paper, we introduce a construction and use it to...
متن کاملAn extension of a result of Lewis
A result of Lewis on the extreme properties of the inner product of two vectors in a Cartan subspace of a semisimple Lie algebra is extended. The framework used is an Eaton triple which has a reduced triple. Applications are made for determining the minimizers and maximizers of the distance function considered by Chu and Driessel with spectral constraint.
متن کاملHamilton Decompositions of Block-Intersection Graphs of Steiner Triple Systems
Block-intersection graphs of Steiner triple systems are considered. We prove that the block-intersection graphs of non-isomorphic Steiner triple systems are themselves non-isomorphic. We also prove that each Steiner triple system of order at most 15 has a Hamilton decomposable block-intersection graph.
متن کاملDecomposing block-intersection graphs of Steiner triple systems into triangles
The problem of decomposing the block intersection graph of a Steiner triple system into triangles is considered. In the case when the block intersection graph has even degree, this is completely solved, while when the block intersection graph has odd degree, removal of some spanning subgraph of odd degree is necessary before the rest can be decomposed into triangles. In this case, some decompos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1979
ISSN: 0097-3165
DOI: 10.1016/0097-3165(79)90032-3